BIBLIOGRAPHY

1. Krasovskii, N.N., On the stabilization of systems in which noise is dependent on the magnitude of controlling. Izv. Akad. Nauk SSSR, Tekhnicheskaia kibernetika №2, 1965.
2. Doob, J. L., Stochastic Processes. J. Wiley and Sons, N. Y., 1953.
3. Letov, A. M., Analytical construction of regulators. IV, Avtomatika i telemekhanika, Vol. 22, N®4, 1961.
4. Krasovskii, N. N. and Lidskii, E. A., Anaytical construction of regulators in systems with random properties, I. Statement of the problem, method of solution. Avtomatika i telemekhanika, Vol. 22 , №9, 1961; II. Optimal control equations. Approximate method of solution. Avtomatika i telemekhanika Vol. 22, №10, 1961 ; III. Optimal control in linear systems. Minimum of the mean square error. Avtomatika i telemekhanika, Vol. 22, №11, 1961.
5. Wonham, W. N., Optimal stationary control of a linear system with state-dependent noise. SIAM J. Control., Vol. 5, NE3, 1967.
6. Wonham, W. N. . Lecture notes on stochastic control. Brown University. 1967.
7. Lur'e, A. I., Minimal quadratic quality criterion of control of a system. Izv. Akad Nauk SSSR, Tekhnicheskaia kibernetika, №4, 1963.
8. Priakhin, N. S., On the problem of analytic construction of regulators, Avtomatika i telemekhanika, Vol. 24, №9, 1963.
9. Nevel'son, M. B. and Khas'minskii, R. Z., Stability of a linear system with random disturbances of its parameters. PMM Vol. 30, N\&2, 1967.
10. Nevel'son, M. B. and Khas'minskii, R. Z., On the stability of stochastic systems. Problemy peredachi informatsii, Vol, 2, №3, 1966.

Translated by L. K.

ON A CRITERION OF STABILITY OF SOLUTIONS OF AN N-TH ORDER LINEAR DIFFERENTIAL EQUATION

PMM Vol. 33, N3, 1969, pp. 578-579
V. N. BEREZHNOI and Iu. S. KOLESOV
(Voronezh)
(Received December 17. 1968)
Using the methods of the theory of cones we establish a sufficient condition of stability of solutions of an n-th order linear differential equation.

Let us consider the following linear differential equation:

$$
\begin{equation*}
\frac{d^{n} x}{d t^{n}}+p_{1}(t) \frac{d^{n-1} x}{d t^{n-1}}+\ldots+p_{n}(t) x=0 \tag{1}
\end{equation*}
$$

where $p_{i}(t)\left(i=1, \ldots, n ; t_{0} \leqslant t<\alpha\right)$ are continuous functions. We shall indicate one criterion of the stability of solutions of (1) in terms of its characteristic polynomial

$$
\begin{equation*}
P(t, \lambda)=\lambda^{n}+p_{1}(t) \lambda^{n-1}+\cdots+p_{\boldsymbol{n}}(t) \tag{2}
\end{equation*}
$$

We will use certain concepts of the theory of cones $[1,2]$.
Let us write Eq. (1) in the form of a first order equation in an n-dimensional Euclidean space R^{n}
denoting its fundamental matrix by $U(t, s)(U(s, s)=I)$.
An important part will be played by the cone K_{0} which is defined as follows. Let $\lambda_{1}, \ldots, \lambda_{n-1}$ be certain constants and let us consider the polynomials

$$
\begin{equation*}
Q_{k}(\lambda)=\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{k-1}\right)=\lambda^{k-1}+a_{k, k-1} \lambda^{k-2}+\ldots+a_{k 1}(k=2, \ldots, n) \tag{4}
\end{equation*}
$$

constructing the matrix

$$
A=\left\|\begin{array}{cccccc}
1 & 0 & 0 & \ldots & \ldots & 0 \\
a_{21} & 1 & 0 & \ldots & \cdots & 0 \\
\cdots & \ldots & . & \cdots & \cdot \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & . & 1
\end{array}\right\|
$$

The cone K_{0} will have the form

$$
\begin{equation*}
K_{0}=\left\{u: A u^{+} \geqslant 0\right\} \tag{5}
\end{equation*}
$$

Inequality $A u^{+} \geqslant 0$ means that the vector $A u$ belongs to the cone K_{+}of vectors with nonnegative coordinates. Semiorderliness generated by the cone K_{0} will be denoted by ${ }^{\circ} \geqslant$ or $\leqslant{ }^{\circ}$. We now introduce the following notation:

$$
\begin{gathered}
\Delta^{\circ}\left(t, \lambda_{1}\right)=P\left(t, \lambda_{1}\right), \quad \Delta^{1}\left(t, \lambda_{1}, \lambda_{2}\right)=\frac{P\left(t, \lambda_{1}\right)-P\left(t, \lambda_{2}\right)}{\lambda_{1}-\lambda_{2}}, \ldots \\
\Delta^{n-2}\left(t, \lambda_{1}, \ldots, \lambda_{n-1}\right)=\frac{\Delta^{n-3}\left(t, \lambda_{1}, \ldots, \lambda_{n-2}\right)-\Delta^{n-3}\left(t, \lambda_{2}, \ldots, \lambda_{n-1}\right)}{\lambda_{1}-\lambda_{n-1}}
\end{gathered}
$$

If some of λ_{i} are equal to each other, the formulas given above should be interpreted in their limiting form, i. e. a small perturbation should be applied to λ_{i} followed by the passage to the limit.

Lemma. Let constants $\lambda_{1}, \ldots, \lambda_{n-1}$ exist such that

$$
\begin{equation*}
\Delta^{k}\left(t, \lambda_{1}, \ldots, \lambda_{k_{+1}}\right) \leqslant 0 \quad\left(k=0, \ldots, n-2 ; t_{0} \leqslant t<\alpha\right) \tag{6}
\end{equation*}
$$

Then the cone K_{0} defined by the formula (5) remains invariant under the action of the operator $U(t, s)\left(t_{0} \leqslant s \leqslant t<\infty\right)$.

Proof. Using the substitution

$$
\begin{equation*}
v=A u \tag{7}
\end{equation*}
$$

Eq. (3) takes the form

$$
\begin{equation*}
\frac{d v}{d t}=A Q(t) A^{-1} v \tag{8}
\end{equation*}
$$

Direct computation shows that

$$
A Q(t) A^{-1}=
$$

$$
=\left\|\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots \\
-\Delta^{0}\left(t, \lambda_{1}\right) & -\Delta^{1}\left(t, \lambda_{1}, \lambda_{2}\right) & -\Delta^{2}\left(t, \lambda_{1}, \lambda_{2}\right) & \cdots & \cdots-p_{1}(t)-\lambda_{1}-\ldots-\lambda_{n-1}
\end{array}\right\|
$$

The above and the inequality (6) imply that the fundamental matrix $V(t, s)\left(t_{0} \leqslant s \leqslant\right.$ $\leqslant t<\infty$) of Eq. (8) transforms the cone K_{+}into itself. Since (7) transforms the cone K_{0}

$$
\begin{align*}
& \frac{d u}{d t}=Q(t) u, \quad u=\left(x, \frac{d x}{d t}, \ldots, \frac{d^{n-1} x}{d t^{n-1}}\right) \tag{3}\\
& Q(t)=\left|\begin{array}{ccccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right|
\end{align*}
$$

into the cone K_{+}, therefore the matrix $U(t, s)\left(t_{0} \leqslant s \leqslant t<\infty\right)$ transforms the cone K_{0} into itself. The Lemma is proved.

Theorem 1. Let a constant λ_{0} exist under the conditions of the Lemma, such that

$$
\begin{array}{cc}
\lambda_{0}>\max \lambda_{i} & (1 \leqslant i \leqslant n-1) \\
P\left(t, \lambda_{0}\right) \geqslant 0 & \left(t_{0} \leqslant t<\infty\right) \tag{10}
\end{array}
$$

Then the following estimate holds:

$$
\begin{equation*}
|U(t, s)| \leqslant M e^{\lambda_{0}(t-s)} \quad\left(t_{0} \leqslant s \leqslant t<\infty\right) \tag{11}
\end{equation*}
$$

where M is some number.
Proof. We set $u_{0}=\left(1, \lambda_{0}, \ldots, \lambda_{0}{ }^{n-1}\right)$. It is easy to see that $A u_{0}=\left(1, Q_{2}\left(\lambda_{0}\right), \ldots\right.$, $Q_{n}\left(\lambda_{0}\right)$) (where $Q_{k}(\lambda)$ are the polynomials (4)). It follows that the vector u_{0} will lie within the cone K_{0}. Therefore we can introduce the following equivalent norm (so called u_{0}-norm [2]) in the space $R^{n}:|u|_{u 0}=\min \alpha \quad\left(-\alpha u_{0} \leqslant{ }^{\circ} u \leqslant{ }^{0} \alpha u_{0}\right)$
We will analyze the function $u_{0}(t)=e^{\lambda_{0}(t-s)}$. From the inequality (10) it follows
that:

$$
\begin{equation*}
\frac{d u_{0}(t)^{\circ}}{d t} \geqslant Q(t) u_{0}(t) \quad\left(t \geqslant s \geqslant t_{0}\right) \tag{12}
\end{equation*}
$$

Let now $-u_{0} \leqslant{ }^{0} u \leqslant{ }^{\circ} u_{0}$. Then from (12) it follows that:
and

$$
\begin{gather*}
-e^{\lambda_{0}(t-s)} u_{0} \leqslant{ }^{0} U(t, s) u \leqslant{ }^{0} e^{\lambda_{0}(t-s)} u_{0} \quad\left(t \geqslant s \geqslant t_{0}\right) \\
|U(t, s)|_{u_{0}} \leqslant e^{\lambda_{0}(t-s)} \quad\left(t \geqslant s \geqslant t_{0}\right) \tag{13}
\end{gather*}
$$

Inequality (13) proves the inequality (11). The theorem is proved.
Corollary. Let $\lambda_{0}<0$ under the condition of Theorem 1, consequently solutions of (1) are exponentially stable.

Theorem 2. Let the inequality (10) under the conditions of Theorem 1 be replaced by

$$
P\left(t, \lambda_{0}\right) \leqslant 0 \quad\left(t_{0} \leqslant t<\infty, \lambda_{0}>0\right)
$$

Then the zero solution of (1) is unstable.
The proof of Theorem 2 which resembles that of Theorem 1 , is omitted.

BIBLIOGRAPHY

1. Krein, M. G. and Rutman, M. A., Linear operators leaving a cone invariant in the Banach space. Usp. matem, nauk, Vol. 3, №1, 1948.
2. Krasnosel'skii, M. A. , Positive Solutions of Operator Equations. M. Fizmatgiz, 1962.

Translated by L. K.

ON THE INSTABILITY OF A PLANE TANGENTIAL DISCONTINUITY

PMM Vol. 33, N3, 1969, Pp. 580-581 N. G. KIKINA and D. G. SANNIKOV
(Moscow)
(Received June 13, 1968)
The problem of instability of a plane tangential discontinuity which was already considered in $[1,2]$, is solved here in connection with the problem on reflection of plane monochromatic waves from a surface of discontinuity. Dependence of the decremental

