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Using the methods of the theory of cones we establish a sufficient condition of stability 
of solutions of an n-th order linear differential equation. 

Let us consider the following linear differential equation: 
d”x d”-lx 

x+ rJ1wdt'L-l+. . . + "n(t)x=u (1) 

where pi (t) (i= 1, . . ., n; t, < t < m) are continuous functions. We shall indicate 
one criterion of the stability of solutions of (1) in terms of its characteristic polynomial 

P (t, h) -in + p1 (t) An-l + . . + p*(t) (2) 

We will use certain concepts of the theory of cones [l, 21. 
Let us write Eq. (1) in the form of a first order equation in an n-dimensional Euclidean 

space Rn 
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du -_ 
& - Q tt) Us 

/I 0 1 0 . 

d--lx -4 dP-’ . . O II 

(3) 

Q(t)= . b. . . . ‘o. , . . ‘d . . ., ._ .*. .$. 

I - P,(t) I - Pn-1 P) - Pn_2 (9 * f . - PI tq 

denoting its fundamental matrix by U(t, s) (0 (8, s) = I). 

An important part will be played by the cone Ka which is defined as follows. Let 
h 1, . * -7 &-I be certain constants and let us consider the polynomials 

Qx (h) = (h - al)... (h - hh_J = a”-’ + ak,+t hk-2 + . . . + akt (k = 3...., n) (4) 

constructing the matrix 
i 0 O...O 

-4 = @I 1 O/6] * . * . * . . . . ..I 

"n1 %2 %x3 * ' . 
lj 

The cone KG will have the form 
K, = (u : Au+ >, 0) (5) 

Inequality AU* > 0 means that the vector Au belongs to the cone K+ of vectors with 
nonnegative coordinates. Semiorderliness generated by the cone Ks will be denoted by 
’ >, or < O. We now introduce the following notation: 

A,” (t, hl) = P (t, hi), A’(t, hi, hz) = 
P@, kl)-- P@, L) i 

hl--h2 I*.* 

An-a (1, hr, . . ., &_r) = 
A+“(t, hr, . . ., h,_,) - An+ (r, A,, . . ., A,_,) 

h, - J”,-1 

If some of hiare equal to each other, the formulas given above should be interpreted 

in their limiting form, i. e. a small perturbation should be applied to hi followed by the 
passage to the limit. 

Lemma. Let constants h,, . , ., h,.+ exist such that 

Ak (t, &, . . .hk+l) < 0 (k = 0, . . ., n-2; to<,<<@.) (‘5) 

Then the cone &, defined by the formula (5) remains invariant under the action of the 

operator U (t, s) (to < s Q t < ~0). 
Proof. Using the substitution 

v= Au (7) 
Eq. (3) takes the form 

$ =I AQ ft) A-% (8) 

Direct computation shows that 

AQ (t) A-i= 

hx 1 0 * .- 0 

0 h2 1 . *. 8 

z . . . . . . . . . . . . . ...*..*...*.........**. 

0 0 0 1 

-A" (t. XI) - A’& hi, hz) -A2(t,h&) . . .-h(t)--?a--.. .-h,_., 

The above and the inequality (6) imply that the fundamental matrix v (t, s) (t,QK 

d r < 00) of Eq. (8) transforms the cone K+into itself. Since (7) transforms the cone K0 
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into the cone K+, therefore the matrix U (t, s) (to < a f t < m) transforms the cone 

K, into itself. The Lemma is proved. 

Theorem 1. Let a constant 5 exist under the conditions of the Lemma, such that 

& > max hf (Idi<n---l) (9) 

p 0, ha) >, 0 (to < t < “) (19) 
Then the following estimate holds : 

1 u (4 s)l < M&t-‘) 
where M is some number. 

(to<S<t<ca) (ii) 

Proof. We set uo= (1, &, . . ., A.,,%1 ). It is easy to see that Aus =(i, Qs (&), . . ., 
Q,(A,,)) (where Qu (A) are the polynomials (4)). It follows that the vector u. will lie 
within the cone K,,. Therefore we can introduce the following equivalent norm (so called 
u,-norm [Z)) in the space R” : , u ,,o = min a (- au, B % s o auo) 

We will analyze the function no (r) = &&8)_ From the inequality (10) it follows 

that: duo W 
~ > Q (9 uo @I dt (t > s > to) (W 

Let now -u. d o u d o uo. Then from (12) it follows that: 

and 
- ,h@-%o < “U (t, s) u < %?~~+%Lo (t > s > to) 

1 u (t, s) 1% < 8-s) (t > s > to) (13) 
Inequality (13) proves the inequality (11). The theorem is proved. 

Corollary. Let ho < 0 under the condition of Theorem 1, consequently solutions 
of (1) are exponentially stable. 

Theorem 2. Let the inequality (10) under the conditions of Theorem 1 be replaced 

bY P (t. ho) < 0 (to< tc-9 ho > 0) 

Then the zero solution of (1) is unstable. 
The proof of Theorem 2 which resembles that of Theorem 1, is omitted. 
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The problem of instability of a plane tangential discontinuity which was already consi- 
dered in [l. 21, is solved here in connection with the problem on reflection of plane 
monochromatic waves from a surface of discontinuity. Dependence of the decremental 


